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Abstract

Inclusion of irrelevant variables in a cluster analysis adversely affects subgroup recovery.

This paper examines using moment-based statistics to screen variables; only variables which pass

the screening are then used in clustering. Normal mixtures are analytically shown often to

possess negative kurtosis. Two related measures, m and coefficient of bimodality b, are also

examined.

A Monte Carlo study compared the screening measures to no selection, De Soete's

(1988) ultrametric weights, and Fowlkes, G-nanadesikan, and Kettenring's (1988) forward

selection procedure. Screening based on kurtosis degraded recovery and is not recommended.

In contrast, screening on m or on b improved recovery over both no selection and forward

selection, and screening performed as well as ultrametric weights. Combining screening with

ultrametric weights performed extremely well. All methods were found to be somewhat sensitive

to other types of error.

Screening variables appears a viable alternative to both ultrametric weights and forward

selection. The potential advantages and disadvantages of screening are considered.

Keywords: Variable selection; Cluster analysis of two-mode data; Kurtosis; Hierarchical

clustering; Euclidean distances.
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1. INTRODUCTION

Applications of cluster analysis commonly involve trying to isolate relatively

homogeneous subgroups of individuals from a collection of entities hitherto thought to be

homogeneous. Thus, this paper adopts the view of cluster analysis as the attempt to "unmix a

mixture of distributions" (e.g., Titterington, Smith, & Makov, 1985; McLachlan & Basford, 1988).

Clusters .'re the homogeneous distributions which are mixed, and applications of cluster analysis

attempt to identify relatively homogeneous subgroups within a more heterogeneous population.

The first step in such an analysis is to select the necessary entities and variables. Meehl

(1979) emphasized the use of clinical insight into the domain of interest, and standard sources

on cluster analysis such as Everitt (1980), Lorr (1983), and Aldenderfer and Blashfield (1984)

merely state that the variables should be theoretically relevant. Yet, cluster analysis is useful as

an exploratory techniqt:6; the domain of interest may be known, but the specific variables which

separate putative subgroups are not known prior to the analysis.

1.1 The Problem of Irrelevant Variables

The usual response of applied researchers is to include all possible variables, in the hope

that the dimensions upon which subgroups differ will be represented by one or more of these

variables. Unfortunately, such a shotgun strategy is counter-productive. In the process of

clustering, the two-mode (variables by entities) multivariate data are converted to a single-mode

(entities by entities) univariate similarity measure, such as Euclidean distance or Q-correlation.

Including irrelevant variables acts to introduce noise into the similarity measure, obscuring

subgroup structure. Everitt (1980) reports that algorithms such as single and centroid linkage

produced similar results when used with similarity data containing error as they did when used

to cluster unimodal data. This renders such methods ertectively useless, as it is impossible to
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interpret such a solution (Donoghue, 1987). Milligan (1980) found that the addition of

irrelevant dimensions resulted in the lowest recovery rates for all of the clustering algorithms he

.studied. He concludes that "a researcher should be particularly cautious when selecting variables

to be used in the clustering process." (1980, p. 341).

The deleterious effect of irrelevant variables is aggravated by attempts to deal with

other problems. Fleiss and Zubin (1969) noted that standardization of variables (to remove

effects of variable scale) has the effect of decreasing between-groups spread compared to those

variables which do not contain subgroups. This implicitly assigns larger weights to variables

which do not measure the between-groups difference, making the subgroups harder to isolate.

Simulations by Milligan and Cooper (1988) and Barton (1993) have found that standardizing

variables can adversely affect recovery by cluster methods. Attempts to deal with problems

caused by computing Euclidean distances from non-orthogonal variables (e.g., Donoghue, 1993)

produce similar problems. Hartigan (1975) reports decreased recovery when using Mahalanobis

distance, and Rohlf (1970) and Chang (1983) discuss problems in clustering based upon principal

components scores. However, techniques developed by Art, Gnanadesikan, and Kettenring

(1982) to estimate the pooled within-groups covariance matrix may alleviate this problem

(Donoghue, 1994). In addition, clustering procedures recently have been proposed which

combine multidimensional scaling and/or variable weighting with specific clustering algorithms

(De Soete, DeSarbo, & Carroll, 1985; DeSarbo, Carroll, Clark, & Green, 1984; DeSarbo,

Howard, & Jedidi, 1991).

1.2 Methods to Deal with Irrelevant Variables

A few general suggestions have appeared which address the problem of irrelevant

variables. Unlike those just cited, these methods are not tied to the clustering algorithm used,

r.
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and so are applicable across a variety of clustering algorithms. Fowlkes, Gnanadesikan, and

Kettenring (1988) suggested a forward selection procedure to determine which variables to

include in a cluster analysis. At each step, their method selects the variable which maximizes

Pillal's trace criterion from MANOVA. For each analysis, expected values of the statistic are

obtained by Montr. Carlo methods, i.e., 100 draw.s of n entities from a spherical, p-dimensional

normal distribution. Forward selection stops when the increase in the trace statistic is less than

the expected value. The method is computationally intensive, with the amount of computation

increasing with the square of the number of variables.

Milligan (1989) examined the use of a variable weighting procedure (De Soete, 1986,

1988) to deal with irrelevant variables. The method selects weights such that the distances

computed from the weighted variables maximally satisfy the ultrametric inequality:

dii S max ( dik, djk) .

This is equivalent to requiring that all sets of three points lie on an acute isosceles (or

equilateral) triangle. Johnson (1967) and Milligan (1979) demonstrated the relationship

between the ultrametric inequality and .nany commonly used hierarchical clustering algorithms.

Milligan (1989) found that using the ultrametric weights improved cluster recovery when the

data contained one, two, or three irrelevant dimensions. The amount of computation for this

method increases with the cube of the number of entities; Milligan reports that the method

required too much computation to complete an addition simulation condition in which datasets

contained 250 entities.

1.3 Moment-based Variable Screening

Some researches have suggested screening variables based upon the shape of the

distribution. For example, Morris et al. (1981, cited in Fletcher & Satz, 1985) have noted that
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normally distributed variables are not consistent with the presence of subgroups in the sample,

and Fletcher and Satz assert that the distribution of the variables must be skewed (1985, p. 49)

in order for the variables to be consistent with the presence of subgroups. While this paper was

in preparation, a study by Bajgier and Aggarwal (1991) was published which compared the

power of a variety of univariate distributional tests to detect balanced mixtures. Testing for

negative kurtosis was the most powerful of the methods they examined.

In this paper, three variable screening strategies are developed and examined. Section 2

examines the meaning of univariate kurtosis, and its relationship to bimodality. Section 3

examines the kurtosis, and two improvements to the kurtosis, the m-index and the coefficient of

bimodality b. Section 4 gives the design of a simulation study to examine these methods.

Section 5 reports the results of the simulation, and compares the screening measures to two

alternatives from the literature. Finally, Section 6 contains discussion of the potential

advantages and disadvantages of screening, and Section 7 presents suggestions for further work.

2. THE DISTRIBUTION OF A MIXTURE

Mixtures are expected to have multiple modes corresponding to the individual subgroups.

Finucan (1964, p. 112) noted, "a bimodal curve in general has also a strong negative kurtosis." A

series of notes in The American Statistician also suggest this (Darlington, 1970; Chissora, 1970;

Hildebrand, 1971), but they also point out that kurtosis is not necessarily negative for bimodal

distributions. In addition, Eisenberger (1964) has examined the conditions under which a

-mixture of two normal distributions will be bimodal or unimodal. Distribution B in Figure 1 is

such a unimodal mixture of two normal distributions. In 1939, Fisher asserted that distributions

such as B had a lower kurtosis than distribution A, the standard normal distribution. Finucan

(1964) proved this assertion, as have others from different points of view (Marsaglia, Marshall,
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& Proshau, 1965; Ali, 1974). As a result, kurtosis is often interpreted as a measure of whether

the distribution is sharply peaked or flattened out compared to the normal distribution. Yet,

Kaplansky (1945) demonstrated that the kurtosis need not be related to the distribution's

peakedness, and Ali (1974) and Johnson, Lietjan and Beckman (1980) have argued that kurtosis

is better conceived of as a measure of the thickness of the tails of the distribution. Distributions

which have thicker tails than the normal take on positive values of kurtosis; those with flatter

tails take on negative values. Balanda and MacGillivray's (1988) review concluded that "it is

best to define kurtosis vaguely as the location- and scale-free movement of probability mass

from the shoulders of a distribution into its center and tails, and to recognize that it can be

formalized in many ways." (p. 111)

Insert Figure 1 about here

A mixture of normal distributions may be unimodal or bimodal. In some cases unimodal

mixtures of normals can have lower kurtosis than a single normal of equal mean and variance.

Bimodal distributions generally may have negative kurtosis, although not always. Hence, there

appears to be some connection between negative kurtosis and mixtures. Thus, we next consider

the kurtosis of a mixture.

3. KURTOSIS OF A MIXTURE

The measure of kurtosis, g2, is the fourth moment about the mean normalized by the

variance squared, and compared to the normal's normalized fourth moment (which is 3):

M4
g 2 =

14
-3 (1)

where Mk is the kth moment about the mean. The kurtosis of a mixture of normal distributions

I 3
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where var is the variance over subgroups and 'r1 is the proportion in subgroup j (the derivation

of (2) is given in the Appendix). There are three competing processes working to determine the

kurtosis of a mixture. Heterogeneity of the within-group variances inflates the kurtosis, as do

differences in the sizes of the subgroups. Differences in the subgroup means work to decrease

the kurtosis.

The form of (2) allows two properties to be easily demonstrated:

A) Common Mean: When the subgroup means are identically equal to A, all of the

- 02 terms drop out, and the kurtosis of the mixture is non-negative, g > 0.

B) Homogeneous Variances: When the subgroup variances are identically equal to

2, the kurtosis is a function only of the subgroup means. In this case, g, will be

less than zero, provided that the 7ri are not too dissimilar. Thus, the kurtosis will

be negative whenever the variance of the squared differences of the means 0.4; - 10'

is less than twothirds of the sum of (A; - 12)4. While this expression has no simple,

intuitive meaning, it will be true whenever the subgroups are relatively similar in

size, for example if the ratio of the sizes is less than 3:1 in the two subgroup case.

Assuming normality of withingroup distributions, platykurtosis (g < 0) indicates the

presence of subgroups. Unfortunately, the converse is not true. Thus, kurtosis may be used as a

relatively stringent screening measure. The inferences which may be made (in the absence of
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sampling error) are summarized in Table 1.

Insert Table 1 about here

The screening test based upon kurtosis may be improved by including the information

about the variable's skewness. Such a correction is particularly attractive because kurtosis it.

most powerful in situations in which the overall distribution is nearly symmetric (in Table 2, cell

III and cell II when the nj are similar). The si:ewness, gj is defined as:

M3
g 1 [m 3 / 2

For a mixture, this becomes:

2
3 E niai (Pi P) E nJ (Pi 3

_ j=3. j=1
13/2

j '1
E E ni (Pi

it 1

The factors of unequal withingroup variances and unequal mixing proportions (;ri) induce

skewness in the mixture distribution. Thus, incorporating a correction for the skew will make

the test more powerful.

The kurtosis is always bounded below. This lower bound is usually given as:

g2 > -2.

_However, the actual lower bound (Stuart & Ord, 1987, p. 115) is

g, + 3 > gl2 + 1 . (3)

This suggests the index m:

m= g2 gI2 (4)
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which has a uniform lower bound of -2.0 for all variables.

As with kurtosis, a plausible selection rule is to use variables for which m < 0. There is

no simple expression for (4) in the presence of mixtures. However, it does have several

desirable properties. It has an expected value of zero for a single (nonmixture) normal

distribution. Under the condition of homogeneity of subgroup means, it reduces to the kurtosis

of the mixture, and again has a nonnegative expected value. Similarly, under homogeneity of

subgroup variances, the value is negative for most cases.

The coefficient of bimodality b in SAS (1985) also incorporates the bound in (3):

2.91 + 1b
g2 +3

The coefficient is bounded, 0 < b < 1. The manual suggests that values "greater than 0.555 may

indicate bimodal or multimodal" distributions (1985, p. 272). No explanation is given for this

value, but it is the expected value of the statistic for a uniform distribution, and assumes that

values larger than this are likely to reflect true subgroup structure (W. S. Sade, personal

communication, June 11, 1987). To date, no studies have investigated the efficacy or power of

this measure. The expected value of the statistic is .333 for a single normal distribution. Large

values of b suggest multimodality. It will take on values less than or equal to .333 when no

mean differences are present. Also, b is more sensitive than is m; m < 0 implies b > .333.

To illustrate the behavior of g2, m, and b, the expected values of each were calculated for

a variety of mixtures. Table 2 gives values for each of the measures for selected combinations

of subgroup proportions, means and variances for mixtures of two and three subgroups, and

Table 3 gives the values of each of the statistics for several common probability distributions.
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Insert Tables 2 and 3 about here

Table 3 illustrates a desirable property of the measure m. Its expected value is independent of

the distributional parameters for several of the distributions examined. In the remaining cases it

is a very simple function. This is not true of b. It is not clear whether this property is more

important than the slightly greater sensitivity of b.

4. SIMULATION DESIGN

A Monte Carlo study was undertaken to systematically evaluate the proposed screening

measures on the ability of common clustering algorithms to recover a known subgroup structure.

4.1 Method

Data were generated using a modified version of the algorithm given by Milligan (1985).

This algorithm has been used in a number of studies. Each dataset consisted of 50 observations.

Within a subgroup, observations were drawn from a truncated multinormal distribution, with

observations constrain xi to lie within the range, Ai ± 1.5 crj in the first dimension. In addition,

subgroup boundaries were well separated in the first dimension. This insured that there was no

-overlap among the subgroups.

Design

The chief variable of interest was the effect of the variable selection/weighting

procedures which were applied to th,- tasets. Four additional factors were manipulated in the

data generation:

1) Number of subgroups (4 levels) -- 2, 3, 4, or 5 subgroups,

2) Number of "core" variables (3 levels) -- 4, 6, or 8. Subgroup means differed on each

of these dimensions.
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3) Density of subgroups (3 levels):

a) equal sized subgroups,

b) the first subgroup was 10% of observations, other subgroups were equal sized,

c) the first subgroup was 60% of observations, other subgroups were equal sized.

These three factors were fully crossed to yield 36 (4 X 3 X 3) conditions. Three replicate

datasets were generated per condition, for a total of 108 base datasets. Each of the base

datasets was then modified according to seven error conditions:

4) Error condition

a) No error

b) One normally distributed noise dimension

c) Two normally distributed noise dimensions

d) Three normally distributed noise dimensions

e) Error perturbed coordinates, low error, X = 1

f) Error perturbed coordinates, high error, X = 2

g) Outlier condition, 10 observations (i.e., 20%) which did not fall within any

subgroup were added to the dataset.

For the error perturbed coordinates condition, the normally distributed error was added to the

original coordinates:

EJD< = Ajik lejik

e ik N(0, aik)

This resulted in a total of 756 datasets. See Milligan (1985) for additional details on the data

generation and error conditions. The variables in each dataset were then weighted and/or
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screened using each of the 10 methods listed below, yielding 7,560 weighted datasets. Each

weighted dataset was then analyzed by four clustering algorithms, making a total of 30,240

clusterings. For each clustering, the solution for the correct number of subgroups was used as

the result for that method.

Selection Algorithms

Each data set was subjected to 10 variable weighting/selection strategies:

A) No selection,

B) g, < -1.2,

C) g2 significantly < 0. This was determined at a = .05, using the tables in Chen (1983),

D) ,g, < 0,

E) m < -1.2,

F) m < 0,

G) b > .555,

H) b > .333,

I) De Soete's (1986, 1988) ultrametric weighting algorithm,

J) Fowlkes, Gnanadesikan, and Kettenring's (1988) forward selection algorithm.

Cluster Algorithms

The 10 weighted versions of each dataset were then analyzed four times, corresponding

to different hierarchical clustering algorithms and measures of similarity. The clustering

methods were: (a) Single linkage, Euclidean distance; (b) Complete linkage, Euclidean distance;

(c) Average linkage, Euclidean distance; (d) Ward's method (minimum variance), squared

Euclidean distance. The clustering methods were chosen because they are widely used and

average linkage and Ward's method have consistently performed well in previous studies. For a
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discussion of these algorithms, the reader is referred to standard introductions to cluster analysis

(e.g., Everitt, 1980; Loa; 1983).

Outcome Measure

The outcome measure for the study was the Hubert and Arabie (1985) modification of

Rand's (1971) statistic, which will be denoted HA-Rand. The index was computed between each

cluster solution and the true subgroup membership used to generate the data. This index is

based on examining pairs of entities, and determining whether they are classified into the same

or different subgroups. A value of zero reflects chance agreement with the true membership,

and 1.0 reflects perfect agreement. A study by Milligan and Cooper (1986) supports the

accuracy of Hubert and Arabie's modification.

Computer Programs

Data were generated Bing a modified version of Milligan's (1985) program. The

weights for De Soete's algorithm were computed using his program OVWTRE (De Soete,

1988).' The moment statistics, the Fow Ikes, Gnanadesikan, and Kettenring (1988) forward

selection algorithm, and clustering algorithms were computed using FORTRAN programs

written by the author. Accuracy of these programs was ensured through numerous comparisons

of results of subroutines and final classifications with routines from SAS and SPLUS.

Eigenvalues were computed using routines from EISPACK (Smith, Boyle, Garbow, Ikebe,

Klema, & Moler, 1974). Note that the forward selection procedure in Fowlkes, Cinanadesikan,

and Kettenring (1988) was developed in terms of the complete link clustering method. For the

present study, the full method of determining expected values via Monte Carlo methods and

The author is indebted to Glenn Milligan for providing a copy of the source code of his generation
program and OVWTRE.
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then performing forward selection was applied to each of the clustering algorithms.

5. SIMULATION RESULTS

Although ANOVA might seem a natural means to summarize the results, it was not used

for the present study.' The primary independent variable of interest was the

weighting/selection method used in the analysis. The other factors in the design were included

to ensure that their effects were systematically present, anu so would not confound the results

concerning variable weighting/selection. It is more meaningful to oirectly examine the

comparisons of interest, using multiple comparison procedures to control overall Type I error

rate. Still, there may be interest in the main effects of the other variables in the study. These

are summarized in Appendix Table Al. In general, the effects replicate those in other studies

(e.g., Milligan, 1980, 1989).

The variable screening/weighting methods primarily were compared using a distribution

free ordinal procedure, Cliff's (1993) method of comparing the order of two distributions.

Ordinal comparisons were performed using a modified version of Cliff's (1992) program

PAIRDEL1, for paired observations. Two types of ordinal hypotheses were assessed. The first,

based on the index d,, is the proportion of datasets for which one method yielded higher

recovery than the other method minus the proportion for which it yielded lower recovery; it is

the net proportion of datasets with improved recovery. Negative values of cl,,, indicate lower

recovery for first method. The second ordinal procedure estimates the probability that a

randomly sampled observation from one distribution has a larger value than a randomly sampled

2 In addition, a preliminary investigation of the within-cell means revealed substantial heterogeneity of
variance, violating the ANOVA assumption, and making the ANOVA tests suspect.
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observation from the other distribution. This results in one of three decisions for each pair of

clustering methods: a) Method A is higher (better recovery) than Method B; b) Method B is

higher than Method A; or c) the methods do not significantly differ. In addition, pairwise t-tests

of means were also computed.

The results will be discussed in six sections. In Section 5.1, the minimal requirement of

effectiveness for the proposed screening measures is examined: Does using the measure yield an

improvement over no screening? Measures which provide no improvement are certainly not

worth adopting. Next, Section 5.2 compares recovery using the variable screening to two

suggestions from the literature: (a) variable weights to maximize agreement of the distances with

the ultrametric inequality (De Soete's 1' 458 program); and (b) the forward selection procedure

of Fowlkes, Gnanadesikan, and Kettenring (1988). Section 5.3 looks at the robustness of the

screening procedures; how do they perform in the presence of other types of error (perturbed

coordinates and outliers)? Section 5.4 evaluates the effect of combining variable screening with

ultrametric weights. Next, Section 5.5 examines the interaction of the best screening/weighting

methods with clustering algorithms. Finally, Section 5.6 explores the effec'. of variable

standardization on the behavior of the forward selection algorithm.

5.1 Effectiveness

The minimal requirement of effectiveness is that using the variable screening/weighting

method yield an improvement over using no selection. To address this issue, each method was

compared to no selection. These comparisons were made on HA-Rand index values pooled

over all datasets containing 0, 1, 2, or 3 error dimensions. Table 4 summarizes the results of

these comparisons.
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Insert Table 4 about here

The three methods based on the kurtosis, g2 < -1.2, g2 signif. < 0, and g2 < 0, yielded

significantly worse recovery than no selection. Negative d,,, values indicate that the kurtosis -

based measures resulted in lower HA-Rand values for 9-27% of the datasets. This result differs

sharply from the results of Bajgier and Aggarwal (1991), who found kurtosis to be the most

powerful measure for detecting mixtures. However, Bajgier and Aggarwal only examined

balanced mixtures, i.e., mixtures with equal mixing proportions and equal variances. To

determine whether this accounted for the difference in findings, Figure 2 plots mean HA-Rand

index results for no selection and for each of the kurtosis-based measures by subgroup size.

Consistent with Bajgier and Aggarwal, the kurtosis-based measures function well for equal-sized

subgroups. When the subgroups differ in size, however, these procedures do not function very

well. Overall, therefore, kurtosis-based measures do not meet the I- asic test of effectiveness as

screening procedures and will not be discussed further.

Insert Figure 2 about here

As was noted above, unequal subgroup sizes induce skewness in the overall distributions.

Thus, the measures which incorporate information about skewness, b and m, may be more

useful. Table 4 reveals that all four of the screening methods involving b or m yield better

recovery than no selection. In addition, neither the m-index nor b showed a large effect for

subgroup size. The largest effect for subgroup size was a difference in HA-Rand index of

approximately .06; for the kurtosis-based measures the effects ranged from .15 to .30.

Weighting the variables to maximize agreement with the ultrametric inequality yielded
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significantly higher recovery than no selection. The forward selection method did not differ

from no selection in the ordinal comparisons. However, paired t-tests indicated that forward

selection did yield a significantly higher mean HA-Rand index than no selection. The

differences in these results will be examined in more detail in the next section.

5.2 Comparison with Other Weighting/Selection Methods

Pairwise comparisons of the 7 remaining methods' were made on HA-Rand index values

for analyses of all datasets containing 0, 1, 2, or 3 error dimensions. Shaffer's (1986)

modification to the Bonferroni correction was used to maintain familywise Type 1 error rate of

a =0.05. Fiaally, these pairwise relations were converted into ranks, based upon the number of

methods which were significantly higher than a given method versus the number of methods

which were significantly lower. These results are summarized in Table 5.

Insert Table 5 about here

Table 5 also presents mean recovery for each number of error dimensions. When there

are no error dimensions, m < 0 yields similar recovery to no selection, while m < -1.2 gives

somewhat worse recovery. Screening based on the test of normality, m < 0, recovery is

somewhat affected by the addition of error dimensions, but less so than no selection. On the

other hand, screening based on the uniform distribution (m < -1.2) yields similar results for all

numbers of error dimensions. Overall, in the presence of error dimensions, however, both the

normal and uniform tests yield HA-Rand recovery values higher than those for no selection.

The pattern of results for b, the coefficient of bimodality, is very similar to that for the m-index,

Kurtosis-based methods are not discussed due to their poor performance in the comparison with no
selection.

C
4".
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although the normality test (b > .333) provides only minimal improvement over no selection.

In comparing the relative effectiveness of the screening measures with the ultrametric

weights and forward selection procedures, Table 5 reveals that recovery using the ultrametric

weights did not significantly differ from the screening methods based on a uniform distribution

(b > .555 and m < -1.2), but outperformed both methods based on a normal distribution

(b > .333 and m < 0). The paired t-test results indicated that screening based on m < 0 did

not differ from the ultrametric weights, but screening based on b > .333 was still worse. Based

on the ordinal comparisons, the forward selection method was found to yield lower cluster

recovery than all four of the variable selection methods using b and m. However, based on the

paired t-test results, the forward selection method is superior to selection based on b > .333,

and did not differ from the other methods.

A word is in order concerning discrepancies between the rank orders derived from the

ordinal comparisons and those implied by paired t-test of the means. Forward selection has a

noticeably higher mean than selection based on b > .333, yet the ordinal comparison indicates

that recovery for forward selection is significantly lower. This seeming paradox points out the

different questions addressed by the two comparisons. The ordinal method compares

differences in direction, but the means take into account the size of those differences.

Examination of the differences in the individual solutions confirms that b > .333 yields more

cluster solutions with HA-Rand that is higher than forward selection than vice versa. However,

forward selection occasionally produces a solution which is much better, giving forward selection

a higher mean. Thus, both are legitimate answers to the question: Which method is better?

5.3 Robustness to Other Types of Error

An additional issue in comparing the methods is their sensitivity to other types of error
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contaminating the cluster structure. Milligan's cluster generating program ;ncludes three

additional error conditions: (a) data perturbed by adding an error to each coordinate, low error

variance; (b) data perturbed by adding an error to each coordinate, high error variance; and

(c) including an additional 20% (i.e., 10 cases) which do not lie within the boundaries of any of

the clusters (i.e., outliers and intermediates). These conditions will be referred to as,

respectively, low error, high error, and outlier conditions.

Table 6 gives the mean HA Rand index and ranks based on ordinal pairwise

comparisons of the methods for each of the error conditions. For all conditions, b > .555 and

m < -1.2 yield much lower recovery than other methods, indicating that these selection methods

degrade cluster recovery in the presence of error other than spurious variables. On the other

hand, variable selection methods based on normality, b > .333 and m < 0, are relatively robust,

and show little difference in cluster recovery from that of no selection.

Insert Table 6 about here

.5.4 Combined !Methods

Variable selection based on the m-index and the coefficient of bimodality b are effective

in reducing the effects of spurious dimensions. Variable weighting based on the ultrametric

inequality is also effective. This section examines the effectiveness of combining the two

strategies, selection and ultrametric weights. Variations of the forward selection method were

not considered; forward selection is extremely computationally intensive, and combining the

method with other techniques was not feasible for the purposes of this study.

Each of the datasets was reanalyzed. First, one of four variable screening m. thods

(m < -1.2, m < 0, b > .333, or b > .555) was applied. The variables passing the screening were
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then analyzed using De Soete's (1988) program to determine the variable weights. If no

variables passed the screening, all variables were used. The weighted distances were then

computed and analyzed by the clustering algorithms, as described in the Method section.

In order for the combination of weighting and screening to be effective, the results of the

combined methods must be superior to both weighting alone and screening alone. Table 7

summarizes comparisons of the combined methods to (a) screening alone and (b) using only the

ultrametric weights. Although most of the methods show improvement, the combination of

weights and screening based on m < -1.2 yielded worse recovery than did either method alone.

The negative values of d,., and the ordinal z-test indicate lower recovery for the combined

method, although the paired t-test indicates that the combined method yields a higher mean

than does m < -1.2 alone. This pattern of results suggests that the combined method often

yields somewhat lower recovery, but occasionally does much better than screening alone.

Combining weighting with screening based on b > .555 yielded increased recovery in a net 2-3%

of the datasets, and gives higher mean recovery, although the overall comparison of distributions

does not significantly differ from screening alone. Finally, combining weighting with either of

the two methods based on a normal distribution (m < 0 and b > .333) clearly improves

recovery.

Insert Table 7 about here

Table 8 summarizes the results of applying the combined procedures to datasets with 0,

1, 2, or 3 error dimensions. In addition, results for five additional methods (No Selection,

ultrametric weights, forward selection, and the unweighted versions of m < -1.2, and b > .555)

are repeated from Table 5. Overall, best recovery was obtained for m < 0 with weights and
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b > .555 with weights. Although the ordinal test indicated that the latter did not differ from the

unweighted version, the mean for the combination method is much higher. The profile of

means for b > .555 is impressive; there is virtually no effect of increasing from 0 to 3 error

dimensions. On the other hand, m < 0 shows a modest effect of increasing error dimensions.

Insert Table 8 about here

Table 9 presents the results for the other error conditions: low error, high error, and

20% outlier. The combined method based on b > .555 shows considerable sensitivity to the

other types of error, and is uniformly among the three methods with the lowest recovery. The

combined method based on m < 0 is much less sensitive to the other types of error, and does

.not differ from ultrametric weights only for the low error or high error conditions. Comparison

with Table 6 reveals that the means are very similar to the unweighted version for these two

conditions, although the combined method does appear to be somewhat affected by the presence

of outliers.

Insert Table 9 about here

5.5 Interaction of Variable Screening with Clustering Methods

An additional question of interest is whether the variable weighting/screening methods

differed in usefulness for the different clustering algorithms. To address, this issue, the mean for

each clustering algorithm was computed for six of the eight methods listed in Table 6. Screening

based on b > .555 and m < -1.2 were omitted. For each of the clustering algorithms, the

omitted methods showed a very similar pattern to other screening methods, which also yielded

higher recovery. Means for the average linkage algorithm are plotted in Figure 3. Results for
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Ward's method are shown in Figure 4. Recovery for the complete linkage algorithm is

portrayed in Figure 5 and means for single linkage are plotted in Figure 6.

Insert Figures 3 through 6 about here

There were few large interactions between clustering algorithms and the variable

weighting/screening methods. The notable exception is the behavior of forward selection for the

single linkage algorithm. For the other algorithms forward selection appears to have little to

recommend it; using forward selection with average linkage yields recovery which is uniformly

lower than that of any other method, including no selection. On the other hand, the method

gives uniformly high recovery when used with single linkage clustering, and is the best method

for that algorithm. Other method by clustering algorithm interactions were relatively small.

5.6 Behavior of the Forward Selection Method

The relatively poor performance of the forward selection method of Fowlkes,

Gnanadesikan, and Kettenring (1988) was unexpected. Results presented in their paper

indicated that the method was very effective, if somewhat computationally intensive. The

datasets in their study tended to have variables with similar variances. In this study, both within-

group and overall variances were allowed to differ rather widely. The forward selection

procedure standardizes each of the variables by its total variance in order to remove spurious

scale effects from the computation of eigenvalues used in the selection. Milligan and Ccoper

(1988) and Barton (1993) have found that this method of standardization can adversely affect

recovery by cluster methods.

Of the methods used in this study, only the forward selection procedure used

standardized variables. To investigate whether this difference niight have caused the unexpected
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performance of the forward selection data, the datasets were reanalyzed. Only those variables

selected by the forward selection proceduf e were included in the analysis, but the variables were

not standardized in forming the Euclidean distances. Table 10 compares results from this

method with the standardized version of forward selection, no selection, ultrametric weights, and

the two best combined methods for screening and weights. Forward selection was adversely

affected by variable standardization; standardizing variables leads to lower recovery in almost

9% more datasets than vice versa. Comparisons with other methods reveal that without

standardizing variables, forward selection is superir- to no selection, and ordinal comparisons

indicate that it does not differ significantly from the other methods. Mean comparisons indicate

marginally better recovery than ultrametric weighting alone and marginally worse recovery than

screening based on b > .555 combined with weights. Means for each number of irrelevant

dimensions are presented in Table 11.

Insert Table 10 and Table 11 about here

6. DISCUSSION

Replicating the work of other authors, the inclusion of irrelevant dimensions was found

to severely degrade cluster recovery. This paper examined the usefulness of moment-based

univariate statistics to screen variables. Only variables which pass the screening are then used in

the clustering. Results for screening based on the kurtosis measure g, were very poor. For

subgroups of equal size, g2 functioned fairly well, but did very poorly for unequal sized

subgroups. Thus, it appears that the results of Bajgier and Aggarwal (1991) do not generalize,

and screening based on g, cannot be recommended for applied clustering.

In contrast, screening based on the index m and on the coefficient of bimodality b
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functioned well. Both measures provided increased recovery over no selection and forward

selection, and versions of each (m < -1.2 and b > .555) performed as well as the ultrametric

weights. However, there is evidence that all of the weighting/selection methods are sensitive to

types of error other than spurious dimensions. Selection based on b > .555 and m < -1.2 were

most severely affected, although forward selection and ultrametric weights were also affected.

Selection based on b > .333 was least affected, followed by m < 0.

Combining variable screening with ultrametric weights performed very well. Two

combinations specifically, m < 0 with weights and b > .555 with weights showed improved

cluster recovery in the presence of irrelevant dimensions. However, the combined methods

(particularly b > .555 with weights) were sensitive to types of error other than irrelevant

dimensions. The combined method based on m < 0 was better, although it does appear to be

somewhat more sensitive to outliers than either screening alone or ultrametric weights alone.

However, procedures have been developed to identify outliers prior to clustering (e.g., Barton,

1991). The use of such procedures may further improve the performance of the combined

methods.

One limitation of the present study is that the overall sample size, excluding outliers, was

held constant. It is possible that the various variable selection/weighting methods examined

here may be dependent on this aspect of the data. Further work should examine the extent to

which this is true.

These results indicate that variable screening based on b and m are viable alternatives to

-both the ultrametric weighting method and the forward selection method. It is worthwhile to

briefly consider the relative advantages and disadvantages of screening, compared to the other

methods. The advantages of m and b are ease and speed of computation, ready availability, and
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potential applicability to a wide variety of clustering methods. Potential disadvantages include

the large sampling variability of higher moments, the dependence on the mixture model of

clustering, and the potential of univariate methods to fail to identify variables which, although

individually providing little information, as a set yield large subgroup separation.

6.1 Potential Advantages

The measures m and b are based on the moment statistics, the skewness and the

kurtosis. Thus, they are simple and quick to compute, and the amount of computation in

examining a given dataset increases linearly with the number of entities and with the number of

variables. In contrast, both ultrametric weights and forward selection are computationally

intensive, making their use problematic for large datasets. Computation for the ultrametric

weighting algorithm increases with the cube of the number of entities, while computation for the

forward selection method increases with the square of the number of variables. Indeed, well

over 95% of the computational effort of the simulation results reported here were devoted to

.the forward selection method.

The components of m and b, the skewness measure g, and the kurtosis, g2, are widely

available as standard descriptive statistics. Thus, these measures may be adopted easily by

researchers. The ultrametric weights require alternating two multivariate optimization problems,

a task which may well be beyond many applied researchers. The method is not widely available,

i.e., in statistical packages, although De Soete (1988) has a program to compute the weights.

The forward selection procedure is even harder to implement. Determining the expected value

of the trace statistic requires drawing multiple multivariate samples, performing a MANOVA

decomposition of the results of clustering each sample, and computing the resultant eigenvalues.

This is only moderately demanding in an interactive statistical environment such as S-PLUS or
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GAUSS, a major undertaking in FORTRAN or C, and borders on herculean in a statistical

package such as SPSS or BMDP.

The measures m and b are suggested based on analysis of the mixture model of

clustering. Thus, use of the measures is justified with other types of clustering algorithms, such

as iterative partitioning algorithms (i.e., k-means) or direct application of finite mixture models,

although the empirical utility of using the methods in these settings has yet to be established.

-The ultrametric weights, on the other hand, are closely tied to hierarchical clustering. The

proofs by Johnson (1967) and Milligan (1979) specifically relate to hierarchical clustering. There

is no logical reason to expect ultrametric weights to improve clustering by nonhierarchical

algorithms, although it may be empirically found to be useful. The forward selection method is

closely related to the normal mixture conception of clustering. Thus, its application is logically

valid, although some operational details of the application of the method would need be to

resolved.

6.2 Potential Disadvantages

The relationship of the variable screening measures to mixture models may also be a

disadvantage. Ultrametric weighting may apply in other conceptions (e.g., graph-theoretic) of

hierarchical clustering. In these cases, the mixture model conception may not make sense. The

utility of m and b would have to be established empirically in such situations. Similarly, some

applications of cluster analysis are inherently hierarchical (e.g., evolutionary biology), and again

the use of the screening measures would have to be established empirically.

Another potential disadvantage of the screening measures is their dependence on the

third and fourth moments about the mean, which are rather poorly estimated in samples. This

raises valid concern over the degree to which m and b may fluctuate simply due to sampling
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variation. The simulation results presented in Section 5 offer some encouragement along these

lines. Each. dataset contained a total sample of 50 entities, yet both measures were successful in

screening irrelevant variables. Still, more knowledge about the variability of these screening

measures would be helpful.

Finally, a potential disadvantage in using univariate techniques such as m or b or the

forward selection procedure is that a linear combination of two or more variables may provide

good separation between subgroups, while neither of the marginal distributions reveals much

separation.' There is a danger that the screening may drop such variables, and so lose

information about the subgroup separation. It is unknown how the uitrametric weighting

method would be affected by such a combination of variables. The forward selection procedure

-may be less prone to this type of behavior. It is based on a MANOVA test statistic, and is

sensitive to subgroup separation based on linear combinations. However, if neither variable

provides sufficient univariate separation for inclusion, the forward selection procedure will not

detect that the pair provides good separation. It remains for future research to determine how

adversely affected the weighting/selection methods are by such combinations of variables.

The author would like to thank an anonymous reviewer for pointing out this possibility.
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7. CONCLUSION

Taken as a whole, the results of this work are promising. The screening measures m and

b were successful in alleviating the deleterious effect of including irrelevant variables. Both

-measures provided increased recovery over no selection and forward selection, and versions of

each performed as well as the use of ultrametric weights. The success of the combination

variable screening and ultrametric weights commends the ,,se of these combined techniques; the

combination yielded better recovery than either method separately in a net 2.4-6.7 percent of the

datasets analyzed. However, it is not known to what extent these findings are sensitive to

specific aspects of this study. This is especially true of the distribution of the irrelevant

variables, and the structure of the subgroup separation. Clearly, more work along these lines is

warranted.
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Table 1

Effect of Mean Differences and Withingroup Variance on

the Kurtosis of Mixtures of Normal Distributions

2 02
(I)

g2 = 0
(II) g2 < 0

(unless ri very different)

2 ...
7-

0.2
010

g2 > 0
(IV)

not determined
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Table 2
Screening Measures for Selected Two and Three Subgroup Mixtures

ITwo Subgroup (aj, 022, 7r1, 72)a g2 m b

1, 1, .1. .9 .051 .044 .330

1, 1, .3, .7 -.111 -.132 .353

1, 1, .5, .5 -.500 -.500 .400

1, 1, .7, .3 -.607 -.868 .527

1, 1, .9, .1 4.140 -1.044 .866

.050 .2681, 4, .1, .9 .061

1, 4, .5, .5 .272 .085 .435

1, 4, .9, .1 5.417 -.725 .843

Three Subgroup (a12, a22, a32, 71, 'Iry
11.3),,

1, 1, 1, .3 .4 .3 -.664 -.664 .428

1, 1, 1, .1 .6 .3 .343 .203 .341

1, 1, 1, .3 .6 .1 1.941 .051 .585

1, 1, 1, .1 .1 .3 .474 .270 .346

1, 1, 1, .1 .8 .1 .395 .395 .295

1, 1, 4, .3 .4 .3 .359 -.008 .407

1, 1, 4, .1 .6 .3 130 .378 .296

1, 1, 4, .3 .6 .1 3.529 .663 .579

1, 1, 4, .1 .1 .8 -.018 -.036 .341

.2611, 1, 4, .1 .8 .1 1.756 1.516

1, 4, 1, .3 .4 .3 -.873 -.873 .470

1, 4, 1, .1 .6 .3 .380 .378 .296

1, 4, 1, .3 .6 .1 .345 -.495 .550

1, 4, 1, .1 .1 .8 .854 .738 .289

1, 4, 1, .1 .8 .1 -.336 -.336 .375

= 1, A2 is determined such that the overall mean = 0; = 1, p, = 0, 1.13 is determined such
that the overall mean = 0.
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Table 3

Expected Values of Screening Measures for Selected Distributions

gr g2 m

Bernoulli (p)
1 2p 1

6 -2 1
4 (1 P) P(I P)

Binomial (n,p)
1 2p 1 6p + 6p2 2

n
1 4p + 4p2 + np np 2

linP(1 P) np(1 p) 1 6p + 6p2 + 3np 3np2

Geometric (p)
2 p

6 + P2 2
5 5p + p2

--7p 1-p 9 9p p2

Poisson (m)
Vir: 1_

m
0

m + 1

m 3m + 1

Exponential (X) 2 6 2 .556

Normal (p.,cr2) 0 0 0 .333

x2 00
2 12

k

4
k

k + 8
k 3k + 12

t (n) 0
6 6 n 4

n 4 n 4 3n - 6

Uniform (a,b) 0 -1.2 -1.2 .556
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Table 11

Comparison of Forward Selection Using Unstandardized Variables with Other Methods

Number of Error Dimensions
Overall
Mean

Ordinal
Ranks

Paired
t-test
RanksMethod 0 1 2 3

m < 0,
weights

.969 .963 .949 .937 .954 r ig

b > .555,
weights

.962 .962 .961 .962 .962 2'' 1g

b > .555 .942 .942 .939 .939 .941 2abc 5hi

Forward Selection,
Unstandardized

.986 .948 .942 .936 .953 O. 3sbi

b > .333,
weights

.967 .954 .940 .929 .948 4h(1 4h

Ultrametric
Weights

.962 .937 .938 .926 .941 6' 6ii

m < -1.2 .948 .937 .930 .920 .933 7hde 7'

Forward Selection,
Standardized

.966 .927 .925 .920 .934 8f 7'

No Selection .984 .917 .877 .852 .908 I 8' 9

""444 Methods with common superscripts do not significantly differ from one another. Ranks are based on
the number of methods that were significantly lower.
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Appendix

Let X be distributed as a finite mixture composed of G distributions with mixing

proportions ir1 (f =1,G), i.e.:

fa) = E Tcfrffoo
i=1

We will be particularly interested in the normal mixture model, in which each of the subgroup

distributions f (X) is Is(upal). Let /.4 be the grand mean of X (i.e. p, = Thrill). Let Mk be the

kth central moment for the mixture, and Mki is the kth central moment for subgroup j:

Mki = X (X 14)k . Finally, by the linearity of the expectation operator, note that:

g[f00] = E nig; uom

where X is the expectation with respect to the distribution of subgroup j.

Kurtosis

For a mixture, the fourth moment of the mixture distribution is:

M4 = nj 0C

M4 E of ti ((X + (Ri
p))4

J=1

Expanding the binomial and taking expectations yields:

G G G G

M4 = E n.Af + 4E 7c.M (R. 11) + 6E Tc.02- (R. 11)2 + E 'ir .(p.. 104r 4 J 3J I I I J 1 1
l=1 J=1 j=1 J=1

Similarly, the second moment is:

M2 E n.u* E n.(11- P.)
2

j=1

J3

(A)



Using (1), the kurtosis of the mixture is:

g2

Variable Screening

G G G G

E 1" + 4E niM3i (Pi ii) + 6E .TCJCr (;L 02 + E 7c,(vi 04
.i4 /4 P1 j=1

[G

G

E it,cr, + E lt,(11, 1.)2
j=1 j=1

Let k = g2 M22. Then expanding and collecting like terms yields:

0
k = E A f 3(T cr.,

+ 4E n.M
3J

.(11. II)
j=1

+ 6E ni p.)2 6LE a;) )
J.1 ..1

E ni I 1-04 3LE 402
j=1 '.1

g G G G

k = E n.r M . 3E n. o4. + 4E 7C . M 31 .(p..
J J

p) 2E n.(p. 41)4
1=1 j=1 j=1 j=1

+ 3var [02i] + 6cov[cf) , (4ti-p.)2] + 3var [(p,j-402]

3 .

46

(B)

g G G G
4= E n.M . 3E n.o. + 4E n.M .(1. - p) + 3var[o + (4i - p)2] - 2E n.(11. - 1.)4j 4 j r 3J r 1 I

J=1 1 =1 ri i'l
The above expression (B) is valid for any distribution which has the first four moments. Making

explicit use of the fact that the subgroups are normal, M4i = 3ai4 and M3i M 0 for all j. Making

these substitutions:

k = 3var [0; +(µi 02] 2E ni(p.j 11)4

j=1



and hence:

g2

The skewness of a variable is:

gl

3var [cc,. + (uj 11)2] 2E ni(ui
i=1

gi

G GG

EnI C 7 r 7c,(11;
1=1 1,1

Skewness

E TGi e(X -11)3
i=1

3
2

G

E gig (µi
j=1

11V .02. + Z ( 2
I "-I

[j=1 j=1

En.m 4- 3L p,) +
r 15 I

_ j=1 1=1 j=1

G 3
E niai2 p)2 2

I =1

Assuming withingroup normality, this reduces to:

Si

3E"1I 20-1I E J 11)3I

E 0?. E 7c, 11)2

13"
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(C)

(D)

(E)
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Table Al

Main Effects for Design Factors in the Simulation Study

Number of Subgroups T Mean Std.

2 .848 .348

3 .925 .189

4 .915 .197

5 .876 .219

Number of Core Variables Mean Std.

4 .810 .295

6 .914 .228

8 .950 .190

Number of Error Dimensions Mean Std.

0 .928 .217

1 .894 .244

2 .879 .259

3 .864 .268

Subgroup Sizes Mean Std.

Equal .949 .153

60% in one subgroup .862 .302

10% in one subgroup .862 .257

Clustering Algorithm Mean Std.

Average Linkage .912 .222

Ward's Method .906 .244

Complete Linkage .876 .253

Single Linkage .871 .270
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Table Al (cont.)

Weighting/Selection Mean Std.

No Selection .908 .214

Ultrametric Weights .941 .178

Forward Selection .934 .149

m < 0 .930 .191

m < -1.2 .933 .187

b > .333 .920 .200

b > .555 .941 .171

g2 < 0 .839 .311

g2 signif. < 0 .816 .343

g2 < -1.2 .750 .354
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